id_columns_data_check#
检查任何特征是否可能是 ID 列的数据检查。
模块内容#
类摘要#
检查任何特征是否可能是 ID 列。 |
内容#
- 类 evalml.data_checks.id_columns_data_check.IDColumnsDataCheck(id_threshold=1.0, exclude_time_index=True)[源]#
检查任何特征是否可能是 ID 列。
- 参数
id_threshold (浮点数) – 被认为是 ID 列的概率阈值。默认为 1.0。
exclude_time_index (布尔值) – 如果为 True,则设置为时间索引的列将不包含在数据检查中。默认为 True。
方法
- name(cls)#
返回描述数据检查的名称。
- validate(self, X, y=None)[源]#
检查任何特征是否可能是 ID 列。当前执行一些简单的检查。
执行的检查有
列名是“id”
列名以“_id”结尾
列包含所有唯一值(并且是分类或整数类型)
- 参数
X (pd.DataFrame, np.ndarray) – 要检查的输入特征。
y (pd.Series) – 目标。默认为 None。忽略。
- 返回
一个字典,包含列名或索引及其作为 ID 列的概率
- 返回类型
dict
示例
>>> import pandas as pd
列名以“_id”结尾且完全唯一的列很可能是 ID 列。
>>> df = pd.DataFrame({ ... "profits": [25, 15, 15, 31, 19], ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ]
名为“ID”且包含所有唯一值的列也将被识别为 ID 列。
>>> df = df.rename(columns={"customer_id": "ID"}) >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'ID' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["ID"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["ID"], "rows": None} ... } ... ] ... } ... ]
尽管所有值都是唯一的,但“Country_Rank”不会被识别为 ID 列,因为 id_threshold 默认为 1.0,并且其名称并未表明它是 ID。
>>> df = pd.DataFrame({ ... "humidity": ["high", "very high", "low", "low", "high"], ... "Country_Rank": [1, 2, 3, 4, 5], ... "Sales": ["very high", "high", "high", "medium", "very low"] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == []
但是,降低阈值将导致此列被识别为 ID。
>>> id_col_check = IDColumnsDataCheck() >>> id_col_check = IDColumnsDataCheck(id_threshold=0.95) >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'Country_Rank' are 95.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "details": {"columns": ["Country_Rank"], "rows": None}, ... "code": "HAS_ID_COLUMN", ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["Country_Rank"], "rows": None} ... } ... ] ... } ... ]
如果数据框的第一列包含所有唯一值,并且命名为“ID”或以“_id”结尾,则它很可能是主键。应删除其他 ID 列。
>>> df = pd.DataFrame({ ... "sales_id": [0, 1, 2, 3, 4], ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "The first column 'sales_id' is likely to be the primary key", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_FIRST_COLUMN", ... "details": {"columns": ["sales_id"], "rows": None}, ... "action_options": [ ... { ... "code": "SET_FIRST_COL_ID", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["sales_id"], "rows": None} ... } ... ] ... }, ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ]